
ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

44

1. Introduction
“AI researchers are interested in studying

automatic programming for two reasons: First,
it would be highly useful to have a powerful
automatic programming systems that could
receive casual and imprecise specifications for
a desired target program and then correctly
generate that program; second, automatic
programming is widely believed to be a necessary
component of any intelligent system and is
therefore a topic for fundamental research in its
own right.” [6]

There are at least three different software
synthesis approaches:

1. Step-by-step improvement of programs
(i. e. given specification has to be rewritten
until its text takes the form of an executable
program),

2. Synthesis by examples of pairs the input
and target data or by examples of calculations,

From the example:
“1 gives 1, 2 gives 8, 3 gives 27 and so on”

is it possible to derive a program for y=x * x * x,
where x is input data, and y is output of the
program, (the asterisk is “times”)

3. Synthesis under the proof of the theorem

that the required solution of a problem exists
(deductive synthesis approach, “in which the
derivation task is regarded as a problem of
proving a mathematical theorem” [10]).

Deductive synthesis is described by the
following scheme:

task→ theorem → proof → program
The deductive approach in its classical form

requires for each subject area the availability
of a complete list of assumptions that could be
regarded as axioms of this domain. Their existence
(include a priori given rules of inference) ensures
the completeness of the models, allows posing
and solving the range of problems related to the
completeness, effectiveness and consistency of
using models and procedures.

However, the recent Semantic Web’s,
Semantic Computing’s, ERP’s and others
technologies don’t provide a possibility of
constructing axiomatic systems with a proper
fullness. The inference, based on non-complete
axiomatics, entails non-monotony processes of
reception of results, an appearance of conflicts
with statements received before as well as
decreases the reliability of propositions resulting
from a coherent process of logical inference.
Thus it arose the problem of replacing the

УДК 681.3.06

ПО НАПРАВЛЕНИЮ К УПРАВЛяЕмОмУ СИНТЕЗУ ПРОГРАмм

© 2011 г. А. М. Абрамович

Ведущая Государственная Лаборатория по Разработке Программного Обеспечения,
Уханьский Университет, Китай

В статье рассмотрен синтезатор программного обеспечения, который извлекает

семантику из спецификации заказчика, переводит её в машинно-читаемую форму и создаёт
новое программное обеспечение на основе готовых к использованию фрагментов кода.

Ключевые слова: управляемый синтез, представление знаний предметной области, це-
левая деятельность, конструктивные элементы, синтаксис менеджера.

A software synthesizer, which is able to extract a semantics from customer’s specification,
transforms it into machine-readable form, and creates a new software, basing on ready-to-use
parts of code is presented in the article.

Key words: guided synthesis; domain knowledge representation; target activity; constructive ele-
ments; manager syntax.

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

45

formal system, with its procedures of deductive
inference by other, equally powerful model,
where the effects would be the main features
of finding a solution to the ill-defined domains,
which are described as open systems with
updated knowledge about their structure and
functioning [4].

There are attempts to strengthen the position
of deductive synthesis using heuristics [18],
restricted by scope of single strictly defined
subject area (domain-specific deductive program
synthesis [13]) and others.

The trend of limiting the program synthesis
by scope of rigid-defined software environment,
which is driven by high-level specification,
presents a special interest. “Program Synthesis by
Sketching”, for example, suggested by Armando
Solar Lezama, applies this idea. In Sketching,
insight is communicated through a partial
program (a sketch) that expresses the high-level
structure of an implementation but leaves holes
in place of the low-level details [5].

Following D. Pospelov, we represent
knowledge not in the form of axioms, but as the
detailed description of experience in the area of
satisfaction of needs of separate subject domains
(or needs of all society as a whole). Human
experience evolves with a society and cannot be
formalized once and for all. The offered software
synthesis approach is based on knowledge
representation system, described in [1], and
can be carried out under the specification of
the customer, which is written on semantically
marked natural language.

Instead of proving the existence of solutions,
we completely rely on the proven experience
represented by domain expert and on the scenario
of problems solving, proposed by him in his
specifications.

Generally speaking, the proposed method
is a kind of deductive analysis in the sense that
the system’s engine searches in the knowledge
base a prototype of the task and adapts the found
solution for the given private conditions.

We build domain knowledge data bases using
formalism suggested in [1]. A customer specifies
a task for the system synthesizer as a plan of
his needs’ satisfaction in detail or in a general
form (in scope of his competence) by means of a
simple syntax, which we name manager syntax,
since it represents a customer’s private method
of resource management.

A system’s synthesizer transforms the
customer’s specification into a specification in
terms of the subject domain and finds a general
solution using domain knowledge base, and
applies it to the given situation. In the event
that a suitable general solution is not found, a
synthesizer looks for in the knowledge base
constructive elements to meet the customer
needs, and generates their composition as a new
software solution.

The rest of paper is structured as follows:
we give an overview of the Domain knowledge
representation approach in Section 2; we
introduce the manager's syntax in Section 3; we
describe in brief a basis of Guided Synthesizer
in Section 4; Section 5 contains a small example
that clarify the manager syntax and a guided
synthesis process.

2. Domain knowledge representation
According to [1] we consider target

knowledge as knowledge which the target system
operates with the purpose of the given need.

By environmental knowledge we mean
knowledge about the environment that both
motivates and governs the existence of target
system. This knowledge about an external
environment contains cumulative knowledge of
all external factors that influences on the target
system’s life cycle or/and knowledge about
external processes (activities) that produces the
environmental needs (optional).

Environmental need is knowledge about
an environmental situation and environmental
target activities (optional).

By target activity we mean, generally
speaking, a human activity aimed to the certain
social need satisfaction.

Target knowledge contains Human activity
representation in theoretical (as a generic
pattern) form and as its private implementations.
Finalized target activity we denote here as
Human experience. Strictly speaking, any target
activity represents Human experience (mental or
acquired in practice).

From the management’s point of view target
knowledge is knowledge about resources of
target activity and configurations of constructive
elements that defines an order of the target
activity’s implementation.

Figure 1 shows a Needs driven domain
operating knowledge representation scheme.

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

46

Any social founded need (need) is associated
with one of more ways of its satisfaction by
means of a certain target activities. Therefore we
unite all known ways of every separated need’s
satisfaction together and call such segment
of domain knowledge by Need Satisfaction
Domain.

Need Satisfaction Domain unites knowledge
that represents all known ways of certain
need’s satisfaction. Need Satisfaction Domain
is generated automatically as Need Language
program [1; 21; 22; 23; 24] in response to
the client’s requirements and contains the
following:

– ad of need,
– semantics of need,
– available resources or instructions for their

obtaining,
– an operative plan of the need satisfaction.
As a rule, Need Satisfaction Domain

integrates knowledge of different domains.
Every target activity belongs to a certain

target environment and is represented by its
resources, by configuration of constructive
elements, by known situations, related to the
target activity execution process.

Target activity is composed by target
activities’ constructive elements and other
resources. We distinguish two kinds of target
constructive elements, namely, target subjects
and target objects.

The target subjects are active participants of
the target environment (governments, enterprises,
communities, families, persons, software agents
and others).

The target objects are passive participants
of the target environment. They are target
environment’s entities, which behavior is forced
by target subjects.

Represented domain knowledge is

considered as generic. Accordingly, its semantics
and ontology is considered as generic too. System
engine trough query-answering interface defines
the mapping of semantics and ontology of the
customer with generic ontology and semantics.

Note that, by domain ontology we mean a
net of semantically marked domain concepts that
map social needs, domain needs and the target
activity situations.

3. Manager syntax
We believe that a customer, as well as all

other people, is a manager of his life activity
and related resources. Moreover, we believe that
human’s thinking (in the degree accessible to our
understanding) is a management of intellectual
resources. Therefore we consider a customer as
a manager who manages both his own resources
and resources provided to him.

Suggested system of automatic synthesis
provides a manager with the possibility to specify
a plan, which by his opinion is the best to meet
his needs.

As shown in the Figure 2 the manager syntax
allows specifying the following:

– Name of the need;
– Origin of the need (optional);
– Current state of the operational envi-

ronment;
– The need satisfaction’s available reso-

urces;
– Name of the solution’s method (optional);
– Plan of a manager’s needs satisfaction.
If a manager represents a current situation

informally, its description, as a rule, includes
the list mentioned above. A formal problem
statement, usually, includes only a need’s
formulation and describes a current state of the
operational environment.

We believe that a manager, interested in the

Social need
(a missing
resource)

The available
resources

The need
satisfaction

(constructive)
resources

Target activities

Need Satisfaction Domain

Fig. 1. Need Satisfaction Domain

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

47

result will describe his situation informally and
use the following manager syntax in full:
Manager [Name]: need: name_of_need

state: s1, s2, … sn
causer: name_of_causer |

causer_description |
causer_environment
causer

resource: ar1, ar2,… ark
method: name_of_method
plan: [oper-tag]

[(]
[label:] name_of_sub-need |
[[, | ll]
[label:] name_of_sub-need]
[)] |
expression |
[oper-tag] |
Plan

Here si stands for an element of the
operational environment’s ontology, arj is an
element of the available resources’ ontology,
oper-tag stands for if, then, else, while, until,
goto, «,» (comma) means that the next sub-
need must be satisfied after the previous, «II»
(parallelism) means that sub-needs, shown in
parentheses, can be performed in any order.

The s1, s2, … sn are interpreted as symptoms
of a current situation (i.e. list of subjects, objects,

processes and their characteristics).
As shown in Figure 3, by causer of the

situation we mean the following:
A causer (i.e. an event, a process, an object,

a subject, a criminal, etc.) always acts in a
customer’s environment.

As a customer’s environment may be the
following:

– any animate or inanimate object,
– a professional or a private activity,
– a life activity as a whole.
A causer and a customer’s environment are

described by a special syntax.
We allocate hereafter with a bold the type

terms of the syntax that named semantic tags.
The rest components of statements a manager
writes on his slang.

Therefore it is possible to say that the
manager describes his statements in semantically
marked natural language.

Note that a customer isn't obliged to know
the manager syntax.

Analyzer’s Query-Answering mode (see
below) may capture all necessary information
within the framework of interaction with a
customer.

3.1. The queries’ templates
To facilitate a customer interaction with a

Fig. 2. Manager’s semantic framework.

Social
need

Current state of the The need satisfaction's available resources
operational environment

Origin of the need
Name of the solution’s method

Plan of the need's
satisfaction Causer

Causer’s environment

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

48

system, the following templates of frequently
asked questions are provided:

1. What is X?
2. How did you obtain X?
3. Why did you obtain X instead of Y?
4. Why did you obtain X?
5. How does X?
6. How do you apply Y?
7. What I must possess for X obtaining?
8. What target activity does satisfy my need

N?
9. What resources are necessary for the

target activity T implementation?
10. What constructive elements are included

to the target activity T?
11. What is a contribution of the constructive

element CE to the target activity T?
12. What is a repertoire list of constructive

element?
13. What does constructive element CE?
14. and others
A manager may use these templates or

formulate queries arbitrarily. A component
OntoParser of Analyzer’s Query-Answering
mode (see bellow) translates a query’s arbitrary
text into internal domain knowledge base
representation.

3.2. The requirement’s templates
Manager may break in the calculation

process using the following templates:
1. Give detailed answers for my questions

2. Display The Table of Conformity
3. Display the solution with detailed

explanation
4. Display results of the sub-need SN's

satisfaction Replace X by Y
5. Delete X
6. and others.
Requirements mentioned above are templates

of frequently raised requirements. A manager may
use these templates or formulate requirements
arbitrarily. A component OntoParser of Analyzer’s
Query-Answering mode (see bellow) translates a
requirement’s arbitrary text into internal domain
knowledge base representation.

4. Needs driven Guided Synthesizer
Figure 4 presents needs driven software

synthesis process.
A manager guides the software synthesis

process by means of his specification and
by discussion with the Guided Synthesizer
(synthesizer). The discussion clarifies the
terminology and semantics of the specification.
An ontology driven semantic analyzer
(hereinafter Analyzer) is responsible for the
discussion. It reads the specification step by
step, makes a sentence’s analysis that results a
semantic expectation of the next sentence. If the
expectation is confirmed, the Analyzer considers
the next sentence. If not, it generates questions
for the customer with the purpose to clarify the
semantics. Analyzer takes upon itself a deduction

Causer

Who

Why

Where

When

Wherewith

Tools

Aids and appliances

Algorithm

How

Behavior

Scenario

Fig. 3. Causer of the situation

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

49

of the manager’s specification by means of the
Query-Answering mode in case the manager
doesn’t want using the manager syntax.

The Analyzer produces the “needs satis-
factions resource” in form of known generic
target activity or as a set of available constructive
elements. After that Composer completes (alone
or by discussing with a manager) preconditions
and postconditions of operating constructive
elements. This job results a sought-for Executable
target activity.

Analyzer provides all basic abilities of an
intellectual interface [2]. It not only guides
the software synthesis, but also provides
communication with the manager, proves and
explains decisions, and trains users. Herewith it
operates with knowledge from the Experience
base. Therefore knowledge browsing is an
important role of Analyzer.

Using the factual mapping relation [1], we
describe the Analyzer by the following way:

Analyzer ├ Knowledge Browsing,
Communication, Software Synthesis, Explanation,
Training

Note that Analyzer acts on the basis of the
understanding process.

We define here an understanding process as
a proved mapping of the manager statements’
semantics into generic semantics of Experience
base’s statements.

We mean by a manager’s statement his
specification, query, message or requirement.

4.1. Communication with a manager
Ontology driven semantic analyzer guides

a communication with a manager by means of
understanding of his professional slang. For
this purpose it compares the semantics and
ontology of the customer with generic ontology
and semantics. This mapping is one of the
main actions of Analyzer’s Query-Answering
mode. Query-Answering mode produces
Correspondence Table of the manager’s terms
with generic ontology. For this purpose Analyzer
generates questions by means of Need Language
semantic framework [1; 21; 22; 23; 24].

For example, in case of unknown need it
defines semantic coordinates [1] of the need by
means of questions like the following:

– What is your aim?
– What is the motivation for your need?
Answers for such questions detect need’s

semantics.
In case of a manager’s specification is

semantically unclear, Analyzer finds conformity
between separate units of the manager’s
specification and possible Need Satisfaction
Domain's elements by means of questions like
the following:

– Have you resource, named X (Def: X
is …)?

– Has the resource X the attribute, named Y
(Def: Y is…)?

And so on.
Analyser clarifies the X and Y semantics by

means of declarative descriptions [1].
Based on Correspondence Table, the Analyzer

“understands” the manager’s requirements and
messages.

Using Correspondence Table the Analyzer
translates an initial specification into specification
in generic ontology terms. It debates a new
specification with a manager by means of Query-
Answering mode. Final specification contains
description of executable target activity and all
operating constructive elements.

4.2. Knowledge browsing
Semantic marking of a manager’s

specification grounds a semantic search in
Experience base. It is possible since both an
experience’s description and the manager
syntax uses the same semantic tags [21].
Analyzer translates an initial specification into
specification in generic ontology terms (applying
the Correspondence Table) and uses a need as
well as plan units as key words for discovering
a target activity that meets the need’s semantics
and which constructive elements’ semantics suits
the plan’s units.

Analyzer uses content of manager’s
specification as key words for the confirmation
of found target activity as a sought-for activity
as well as for the discovering of the necessary
constructive elements.

In case of absent a target activity that suits the
manager’s specification, Analyzer sequentially
finds in domain knowledge base constructive
elements that suit the plan’s units.

Generally speaking, we consider a
manager’s specification as a semantically marked
requirement for search in the experience base.
Herewith Analyzer processes the specification
using Query-Answering mode for the retrieving

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

50

the semantics of unknown terms.

4.3. Synthesizer
Following D. Pospelov [4], we consider the

synthesizer (in his terminology – Solver) as a
functional unit of the intellectual interface.

Extending the philosophical meaning of
the understanding concept, we consider it as the
solution concept. This implies that we identify
a complete understanding with a complete
solution.

Accordingly, understanding is the important
function of Analyzer.

Analyzer transforms the manager’s
specification into the Need Satisfaction

Domain specification by means of knowledge
browsing and the communication process. If
Analyzer discovers a generic target activity,
which semantics and configuration satisfies the
manager’s specification, then it checks and fulfills
all necessary preconditions and postconditions
and declares the software synthesis process
ended.

If not, Analyzer generates a new target
activity that satisfies the manager’s specification.
For this purpose it searches target activities and
constructive elements (both local and general)
that separately satisfy the plan’s units and
composes sought-for software.

In case of a target manager’s Need

Specification of the
current need

Ontology driven
semantic analyser

Needs Satisfaction
Domain

Manager

Experience base

Applicable target
activity

Need's recognition

Set of applicable
constructive elements

Composer

Executable target
activity

Fig. 4. Needs driven software synthesis process

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

51

Satisfaction Domain contains knowledge of
software platform, Analyzer composes ready to
use fragments of code that correspond to given
domain entities.

According to domain knowledge building
recommendation [1] the best way to build
Experience base effectively is to represent all
its components by means of unified software
platform. In this case all units of a manager’s
specification will be translated by Analyzer to
the code fragments automatically.

4.4. Grounding and explanation
Grounding and explanation is a mandatory

mode of an intellectual interface. This mode
provides a manager with detailed answers
for the following types of queries: “What X
is?”, “How did you obtain X?”, “Why did you
obtain X instead of Y?”, “Why did you obtain
X?”, “How does X?”, “How do you apply Y?”,
“What do I need to get X?”, “What target activity
does satisfy my need N?” and other. Grounding
and explanation's mode also satisfies such
the manager’s requirements like “Display the
Correspondence Table”, “Display the solution
with detailed explanation”, “Teach me how to
satisfy the need ” and others.

The answer for question may be detailed
in accordance to the manager’s demand “Give
detailed answers for my questions”. For example,
as the answer for question “What is a triangle?”
may be a definition “A triangle is a part of the
plane formed by the intersection of three lines”
or may mirror software representation of a
triangle. For example, manager will receive
definitions that mirror methods of programming’s
representations of a triangle, which are accepted
in the experience base under the Need Language’s
notation:
Def: Triangle V1V2V3

General:
(vertex(3), side(3), angle(3))
Vis.: General introduces the general

Triangle’s model,
Vis.: vertex is a pointer to array that

contain 3 triangle’s
vertexes

Vis.: side is a pointer to array that
contain 3 triangle’s

sides
Vis.: angle is a pointer to array that

contain 3 triangle’s

angles (x1,y1), (x2,y2), (x3,y3):
Vis.: where (x1,y1), (x2,y2), (x3,y3)

describes a
Triangle’s model,

Vis.: Vi names the triangle vertex i
Vis.: (xi,yi) means coordinates of

triangle’s vertex i
and so on.

For example, in case of the need is a
calculation of the spatially-rod constructions
(that consist of pyramids and triangles) by the
finite elements method, a manager receives a
definition of triangle from the calculation of
stress-strain state’s point of view (i. e. (x1, y1),
(x2, y2), (x3, y3) model of triangle).

Knowledge representation approach that is
recommended in [1] facilitates answers for above
mentioned queries and requirements due to the
deep specification of data. The deep specification
of data contains declarative descriptions and
detailed information about environmental needs
and target activities that allows deriving the
target causal-effect network that covers the target
activity’s environment.

Interpreting the structure of represented
knowledge, Analyzer generates a target causal-
effect net in the following way: the external
environment need causes the target activity; the
need of the target activity causes the need of
applying the set of constructive elements and
so on. Using the causal-effect net, Analyzer acts
as a navigator with the purpose of the providing
both groundings and explanations.

The cause and effect network provides also
understanding process. It provides a building
and verification of hypothetic interpretations of a
manager’s specification. Using the causal-effect
net, Analyzer builds expectation (hypothesize)
of the manager specification’s semantics. This
semantics will be proved or rejected further in
the course of both semantic search in Experience
base and Query-Answering process.

5. Example of manager’s specification.
Calculate the perimeter of the triangle

Note that for clarity, we use here the usual
denotations of the triangle and all its components.
In practice, the manager will use his own
terminology.

It’s given △ABC such that ∠A = 58°, ∠C
= △55°, BD ⊥ AC, DC = 4cm.

Find perimeter of a triangle.

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

52

Specification 1 (the manager writes
detailed specification):
Manager:

need: Perimeter △ABC
state: ∠A=58°, ∠C=55°, D∈AC,

BD⊥AC, DC=4cm
plan: BC, AB, AC, Perimeter △ABC
need: length(BC):
state: △BCD, DC=4cm, ∠D=90,

∠C=55°
need: length(AB), length(AD)
state: △ABD, A=58, D=90, ∠BD
need: Perimeter: △ABC
state: AB, BC, AC=AD+DC
As a response to above specification

Analyzer searches in the domain knowledge
base an appropriate target activity (using need
and plan). Since the Experience base doesn’t
contain a target activity that suits need and plan,
Analyzer consequentially satisfies the manager’s
sub-needs listed in plan.

For the purpose of length (BC) calculation
(i. e. length of BC) Analyzer discovers that △BDC
is a right triangle, builds (using a corresponding
generic object’s model) its model, and applies
one of methods (local target activity) attached to
this model that calculate a hypotenuse (BC) as
a quotient from division of a cathetus (DC) of a
triangle on cosine a corner adjoining to it (∠C).

The same actions lead to the calculation of
AB.

For the purpose of Perimeter calculation
Analyzer builds a model of △ABC, finds a local
activity that calculates its perimeter as sum of
sides lengths.

Specification 2 (the manager writes non-
detailed specification):

Manager:
need: Perimeter △ABC
state: ∠A=58°, ∠C=55°, D∈AC, BD⊥AC,

DC=4cm

Processing this specification, the Analyzer
builds the models of △ABC, △ABD and
△BDC, and finds above mentioned local
activities independently.

6. Conclusion
Generally speaking, an automated software

synthesis task resolves itself into an automated
thinking’s task.

Since the nature of thinking is still unknown,
all that we can in these circumstances – is a
detailed representation of the human thinking’s
results that are fulfilled in practice (human
experience), as well as an advanced semantic
search mechanism to capture knowledge for
the problems solving. Herewith we consider
knowledge of human experience as a resource of
the thinking process.

Suggested synthesis approach starts from
understanding a customer as a manager of
available knowledge resources, a representation
of human experience in form of Need Satisfaction
Domains and a query-answering driven search
mechanism.

The guided synthesis is able to produce both
software (using previously represented fragments
of code) and scenarios of human activities for
the performance by a manager independently or
by means of his staff.

The guided synthesis releases a manager
(i. e. a customer) from routine operations. Using
his specification (detailed or not) executed in
the professional slang, the system generates
internal specification using domain ontology,
and composes a detailed description of the target
activity that ready for execution.

References

1. Abramovich, A. “Domain knowledge
representation”. Wuhan University, 2009.

2. Роspelov, D. Мodels of Human
Communication: Dialogue with Computer. //
International Journal of General Systems. –
1986. – Vol. 12, – №4. – P. 333–338.

3. Поспелов Д. А. Электронная вычисли-
тельная техника. Сборник статей. Вып. 3. –
М.: Радио и связь, 1989. – С. 4–20.

4. Поспелов Д. А. Десять «горячих точек»
в исследованиях по искусственному интел-
лекту. // Интеллектуальные системы (МГУ).
– 1996. – Т. 1, вып. 1–4. – C. 47–56.

B

A C
D

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

53

5. Lezama, Armando Solar. Program
Synthesis by Sketching, Technical Report
No. UCB/EECS-2008-177, http://www.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
177.html.

6. Biermann, A. Automatic Programming.
In Encyclopedia of Artificial Intelligence. 2nd
edition. – New York: John Wiley&Sons, 1992.

7. Liu, H., Lieberman, H. Metafor:
Visualizing Stories as Code, http://larifari.org/
writing/IUI2005-Metafor.pdf.

8. Liu, H., Lieberman, H. Toward a
Programmatic Semantics of Natural Language.
Proceedings of the 20th IEEE Symposium
on Visual Languages and Human-Centric
Computing. IEEE Computer Society Press,
2004. http://larifari.org/writing/CHI2005-
NLInterfaces.pdf.

9. Fisher, B., Schumann, J. Automated
Synthesis of Statistical Data Analysis Programs,
Proc. SDP’02: Workshop Science Data
Processing, Greenbelt, MD, Feb. 26–28, 2002.

10. Fischer, B., Pressburger, T., Rosu,
G., Schumann, J. The AutoBayes Program
Synthesis System – System Description,
Proc. CALCULEMUS 2001: 9th Symp. on
the Integration of Symbolic Computation and
Mechanized Reasoning, Siena, Italy, Jun. 21–22,
2001.

11. Fischer, B., Schumann, J. AutoBayes:
A System for the Synthesis of Data Analysis
Programs, Proc. NIPS 2000: Workshop on
Software Support for Bayesian Analysis Systems,
Breckenridge, CO, Dec. 1, 2000.

12. Buntine, W., Fischer, B., Pressburger, T.
Towards Automated Synthesis of Data Mining
Programs, Proc. KDD’99: 5th ACM Int’l Conf.
on Knowledge Discovery and Data Mining, San
Diego, CA, Aug. 15–18, 1999.

13. Fischer, B., Pressburger, T., Rosu, G.,
Schumann, J. The AutoBayes Program Synthesis
System-System Description, RIACS / zCode IC,
NASA Ames Research Center, M/S 269-2.

14. Whittle, J. and others. Amphion/
NAV: Deductive Synthesis of State Estimation
Software. ASE Group: NASA, http://ti.arc.nasa.
gov/m/tech/rse/publications/papers/ASE01/
final.pdf.

15. Manna, Z., Waldinger, R. Fundamentals
of Deductive Program Transactions on Software
Engineering. – 1992. – Vol. 18(8). – P. 674–704.

16. Smith, Douglas R. A Problem Reduction
Approach to Program Synthesis. http://dli.iiit.
ac.in/ijcai/IJCAI-83-VOL-1/PDF/005.pdf.

17. Демьянков В. З. Понимание как интер-
претирующая деятельность. // Вопросы язы-
кознания. – 1983. – №6. – С. 58–67.

18. Lezama, Armando Solar. Program
Synthesis By Sketching, EECS Department,
University of California, Berkeley, Technical
Report No. UCB/EECS-2008-177, December
19, 2008. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2008/EECS-2008-177.pdf.

19. Korukhova, Yulia S. Automation
of Program Synthesis from Logic-Based
Specifications in the Deductive Tableau,
Lomonosov Moscow State University.

20. Abramovich, A. Need Language
knowledge representation platform, Wuhan
University, 2009.

21. Abramovich, A. Need Language,
COLLIN, 2010.

22. Abramovich, A. Towards a Global
Platform of Human Experience, SDPS, 2010.

23. Abramovich, A. Towards Linked Needs,
ICSC, 2010.

Поступила в редакцию 18 января 2011 г.

ВЕСТНИК ЮРГТУ (НПИ). 2011. № 1ISSN 2075-2067

54

Александр Марианович Абрамович – доктор математичес-
ких наук, исследователь Ведущей государственной лаборатории
по разработке программного обеспечения Уханьского универси-
тета (Китай). Автор более 50 научных публикаций. Руководитель
международного исследовательского проекта «Связанные пот-
ребности».

Alexander Marianovich Abramovich – M.Sc. in mathematics,
visitor researcher (State Key Laboratory of Software Engineering,
University of Wuhan, China). Author of more than 50 scientific works.
Leader of International research project «Linked Needs».

38/13 Hazionut st., 35312, Haifa, Israel
Тел.: 972-502-1944-36, e-mail: webdao@gmail.com

I Всероссийский сиМпозиуМ по регионАльной эконоМике
(екатеринбург, 28 июня – 1 июля 2011 г.)

Секция экономики Отделения общественных наук РАН, Институт
экономики УрО РАН, Российский фонд фундаментальных исследова-
ний, Российский гуманитарный научный фонд, ОАО «Трубная метал-
лургическая компания» при информационной поддержке Журнала
экономической теории, журнала «Экономика региона» и издательско-
го дома «Финансы и кредит» извещают о проведении I Всероссийско-
го симпозиума по региональной экономике, посвященного 40-летию
Института экономики УрО РАН.

Председатель Организационного комитета Симпозиума – акаде-
мик А. И. Татаркин. Сопредседатели – академик П. А. Минакир, академик В. В. Кулешов.
Заместитель председателя д.э.н. Ю. Г. Лаврикова. Ученый секретарь – к.э.н. М. В. Власов.

работа Cимпозиума будет проходить по следующим научным направлениям:
1. Направления и проблемы развития современной теории и методологии региональной

экономики.
2. Институты регионального инновационного развития
3. Институты саморазвития территорий разного уровня.
4. Инструментарий и методы прогнозирования регионального развития.
5. Современная государственная региональная политика.
регистрация участников осуществляется ТОЛЬКО на сайте Института экономики

УрО РАН: www.uiec.ru, заявки и тезисы докладов, присланные любым другим способом, Ор-
гкомитетом рассматриваться не будут.

Адрес Оргкомитета симпозиума:
620014, Екатеринбург, ул. Московская, 29, Институт экономики УрО РАН, каб. 513.
E-mail: simpozium2011@mail.ru
Адрес сайта для регистрации участников, отправки заявок и тезисов докладов: www.uiec.ru

