ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne]

VIK 681.3.06

11O HAITPABJIEHUIO K YITPABJIAEMOMY CUHTE3Y ITPOI'PAMM

©2011r.

A. M. Aopamosuy

Beoywaa I'ocyoapcmeennasn Jlabopamopus no Pazpadomke Ilpozpammnozo Qbecneuenus,
Yxanvckuit Ynueepcumem, Kumaii

B cmamve paccmompen cummesamop npocpammuo2o obecneyeHusi, KOMOopbill useiexaem
CEeMAaHmMUKYy U3 Cneyu@uKkayuu 3aKka3iuKa, nepesooum eé 8 MauuHHO-4umaemyio popmy u coz0aém
HOB0€ Npo2pamMMHoe obecnedenue Ha OCHO8e 20MOBbIX K UCNOIb308AHUIO (hpazMeHmo8 Kooa.

KiroueBble ciioBa: ynpasisemulil cunmes, npeocmasgieHue sHanuil npeomemnou oonacmu, ye-
J1e6as 0esimesibHOCHb, KOHCMPYKMUBHbBLE dNeMeHMbl, CUHIMAKCUC MeHeoxcepa.

A software synthesizer, which is able to extract a semantics from customer’s specification,
transforms it into machine-readable form, and creates a new software, basing on ready-to-use

parts of code is presented in the article.

Key words: guided synthesis; domain knowledge representation; target activity; constructive ele-

ments, manager Syntax.

1. Introduction

“Al researchers are interested in studying
automatic programming for two reasons: First,
it would be highly useful to have a powerful
automatic programming systems that could
receive casual and imprecise specifications for
a desired target program and then correctly
generate that program,; second, automatic
programming is widely believed to be a necessary
component of any intelligent system and is
therefore a topic for fundamental research in its
own right.” [6]

There are at least three different software
synthesis approaches:

1. Step-by-step improvement of programs
(i. e. given specification has to be rewritten
until its text takes the form of an executable
program),

2. Synthesis by examples of pairs the input
and target data or by examples of calculations,

From the example:

“1 gives 1, 2 gives 8, 3 gives 27 and so on”
is it possible to derive a program for y=x *x * x,
where x is input data, and y is output of the
program, (the asterisk is “times”)

3. Synthesis under the proof of the theorem

44

that the required solution of a problem exists
(deductive synthesis approach, “in which the
derivation task is regarded as a problem of
proving a mathematical theorem” [10]).

Deductive synthesis is described by the
following scheme:

task— theorem — proof — program

The deductive approach in its classical form
requires for each subject area the availability
of a complete list of assumptions that could be
regarded as axioms of this domain. Their existence
(include a priori given rules of inference) ensures
the completeness of the models, allows posing
and solving the range of problems related to the
completeness, effectiveness and consistency of
using models and procedures.

However, the recent Semantic Web’s,
Semantic Computing’s, ERP’s and others
technologies don’t provide a possibility of
constructing axiomatic systems with a proper
fullness. The inference, based on non-complete
axiomatics, entails non-monotony processes of
reception of results, an appearance of conflicts
with statements received before as well as
decreases the reliability of propositions resulting
from a coherent process of logical inference.
Thus it arose the problem of replacing the

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne 1

formal system, with its procedures of deductive
inference by other, equally powerful model,
where the effects would be the main features
of finding a solution to the ill-defined domains,
which are described as open systems with
updated knowledge about their structure and
functioning [4].

There are attempts to strengthen the position
of deductive synthesis using heuristics [18],
restricted by scope of single strictly defined
subject area (domain-specific deductive program
synthesis [13]) and others.

The trend of limiting the program synthesis
by scope of rigid-defined software environment,
which is driven by high-level specification,
presents a special interest. “Program Synthesis by
Sketching”, for example, suggested by Armando
Solar Lezama, applies this idea. In Sketching,
insight is communicated through a partial
program (a sketch) that expresses the high-level
structure of an implementation but leaves holes
in place of the low-level details [5].

Following D. Pospelov, we represent
knowledge not in the form of axioms, but as the
detailed description of experience in the area of
satisfaction of needs of separate subject domains
(or needs of all society as a whole). Human
experience evolves with a society and cannot be
formalized once and for all. The offered software
synthesis approach is based on knowledge
representation system, described in [1], and
can be carried out under the specification of
the customer, which is written on semantically
marked natural language.

Instead of proving the existence of solutions,
we completely rely on the proven experience
represented by domain expert and on the scenario
of problems solving, proposed by him in his
specifications.

Generally speaking, the proposed method
is a kind of deductive analysis in the sense that
the system’s engine searches in the knowledge
base a prototype of the task and adapts the found
solution for the given private conditions.

We build domain knowledge data bases using
formalism suggested in [1]. A customer specifies
a task for the system synthesizer as a plan of
his needs’ satisfaction in detail or in a general
form (in scope of his competence) by means of a
simple syntax, which we name manager syntax,
since it represents a customer’s private method
of resource management.

45

A system’s synthesizer transforms the
customer’s specification into a specification in
terms of the subject domain and finds a general
solution using domain knowledge base, and
applies it to the given situation. In the event
that a suitable general solution is not found, a
synthesizer looks for in the knowledge base
constructive elements to meet the customer
needs, and generates their composition as a new
software solution.

The rest of paper is structured as follows:
we give an overview of the Domain knowledge
representation approach in Section 2; we
introduce the manager's syntax in Section 3; we
describe in brief a basis of Guided Synthesizer
in Section 4; Section 5 contains a small example
that clarify the manager syntax and a guided
synthesis process.

2. Domain knowledge representation

According to [l1] we consider target
knowledge as knowledge which the target system
operates with the purpose of the given need.

By environmental knowledge we mean
knowledge about the environment that both
motivates and governs the existence of target
system. This knowledge about an external
environment contains cumulative knowledge of
all external factors that influences on the target
system’s life cycle or/and knowledge about
external processes (activities) that produces the
environmental needs (optional).

Environmental need is knowledge about
an environmental situation and environmental
target activities (optional).

By target activity we mean, generally
speaking, a human activity aimed to the certain
social need satisfaction.

Target knowledge contains Human activity
representation in theoretical (as a generic
pattern) form and as its private implementations.
Finalized target activity we denote here as
Human experience. Strictly speaking, any target
activity represents Human experience (mental or
acquired in practice).

From the management’s point of view target
knowledge is knowledge about resources of
target activity and configurations of constructive
elements that defines an order of the target
activity’s implementation.

Figure 1 shows a Needs driven domain
operating knowledge representation scheme.

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne]

Any social founded need (need) is associated
with one of more ways of its satisfaction by
means of a certain target activities. Therefore we
unite all known ways of every separated need’s
satisfaction together and call such segment
of domain knowledge by Need Satisfaction
Domain.

Need Satisfaction Domain unites knowledge
that represents all known ways of certain
need’s satisfaction. Need Satisfaction Domain
is generated automatically as Need Language
program [1; 21; 22; 23; 24] in response to
the client’s requirements and contains the
following:

—ad of need,

— semantics of need,

— available resources or instructions for their
obtaining,

— an operative plan of the need satisfaction.

As a rule, Need Satisfaction Domain
integrates knowledge of different domains.

Every target activity belongs to a certain
target environment and is represented by its
resources, by configuration of constructive
elements, by known situations, related to the
target activity execution process.

Target activity is composed by target
activities’ constructive elements and other
resources. We distinguish two kinds of target
constructive elements, namely, target subjects
and target objects.

The target subjects are active participants of
the target environment (governments, enterprises,
communities, families, persons, software agents
and others).

The target objects are passive participants
of the target environment. They are target
environment’s entities, which behavior is forced

considered as generic. Accordingly, its semantics
and ontology is considered as generic too. System
engine trough query-answering interface defines
the mapping of semantics and ontology of the
customer with generic ontology and semantics.

Note that, by domain ontology we mean a
net of semantically marked domain concepts that
map social needs, domain needs and the target
activity situations.

3. Manager syntax

We believe that a customer, as well as all
other people, is a manager of his life activity
and related resources. Moreover, we believe that
human’s thinking (in the degree accessible to our
understanding) is a management of intellectual
resources. Therefore we consider a customer as
a manager who manages both his own resources
and resources provided to him.

Suggested system of automatic synthesis
provides a manager with the possibility to specify
a plan, which by his opinion is the best to meet
his needs.

As shown in the Figure 2 the manager syntax
allows specifying the following:

— Name of the need;

— Origin of the need (optional);

— Current state of the operational envi-
ronment;

— The need satisfaction’s available reso-
urces;

— Name of the solution’s method (optional);

— Plan of a manager’s needs satisfaction.

If a manager represents a current situation
informally, its description, as a rule, includes
the list mentioned above. A formal problem
statement, usually, includes only a need’s
formulation and describes a current state of the

by target subjects. . ~ operational environment.
Represented ~ domain knowledge is We believe that a manager, interested in the
The available
Social need resources
(a missing Target activities
resource)

The need
satisfaction

(constructive) Need Satisfaction Domain
resources

Fig. 1. Need Satisfaction Domain

46

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne 1

result will describe his situation informally and
use the following manager syntax in full:
Manager [Name]: need: name of need
state: s/, s2, ... sn
causer: name_of causer |
causer_description |
causer_environment
causer
resource: arl, ar2,... ark
method: name_of method
plan: [oper-tag]
[q
[label:] name_of sub-need |

([|11
[label:] name_of sub-need]

DIl
expression |
[oper-tag] |
Plan
Here si stands for an element of the
operational environment’s ontology, arj is an
element of the available resources’ ontology,
oper-tag stands for if, then, else, while, until,
goto, «,» (comma) means that the next sub-
need must be satisfied after the previous, «II»
(parallelism) means that sub-needs, shown in
parentheses, can be performed in any order.
The s/, 52, ... sn are interpreted as symptoms
of a current situation (i.e. list of subjects, objects,

Social
need

processes and their characteristics).

As shown in Figure 3, by causer of the
situation we mean the following:

A causer (i.e. an event, a process, an object,
a subject, a criminal, etc.) always acts in a
customer’s environment.

As a customer’s environment may be the
following:

— any animate or inanimate object,

— a professional or a private activity,

—a life activity as a whole.

A causer and a customer’s environment are
described by a special syntax.

We allocate hereafter with a bold the type
terms of the syntax that named semantic tags.
The rest components of statements a manager
writes on his slang.

Therefore it is possible to say that the
manager describes his statements in semantically
marked natural language.

Note that a customer isn't obliged to know
the manager syntax.

Analyzer’s Query-Answering mode (see
below) may capture all necessary information
within the framework of interaction with a
customer.

3.1. The queries’ templates
To facilitate a customer interaction with a

Current state of the

The need satisfaction's available resources

operational environment

Origin of the need

Causer

Causer’s environment

Name of the solution’s method

Plan of the need's
satisfaction

Fig. 2. Manager’s semantic framework.

47

ISSN 2075-2067 BECTHUK FOPI'TY (HIIH). 2011. Ne 1
Causer
I
- Who Wherewith How
|| Why — Tools Algorithm
— Where | Aids and appliances Behavior
. When Scenario

Fig. 3. Causer of the situation

system, the following templates of frequently
asked questions are provided:

What is X?

How did you obtain X?

Why did you obtain X instead of Y?
Why did you obtain X?

How does X?

How do you apply Y?

What I must possess for X obtaining?
What target activity does satisfy my need

PN R LD =

N?

9. What resources are necessary for the
target activity T implementation?

10. What constructive elements are included
to the target activity T?

11. What is a contribution of the constructive
element CE to the target activity T?

12. What is a repertoire list of constructive
element?

13. What does constructive element CE?

14.and others

A manager may use these templates or
formulate queries arbitrarily. A component
OntoParser of Analyzer’s Query-Answering
mode (see bellow) translates a query’s arbitrary
text into internal domain knowledge base
representation.

3.2. The requirement s templates

Manager may break in the calculation
process using the following templates:

1. Give detailed answers for my questions

48

2. Display The Table of Conformity

3. Display the solution with detailed
explanation

4. Display results of the sub-need SN's
satisfaction Replace X by Y

5. Delete X

6. and others.

Requirements mentioned above are templates
of frequently raised requirements. Amanager may
use these templates or formulate requirements
arbitrarily. AcomponentOntoParser of Analyzer’s
Query-Answering mode (see bellow) translates a
requirement’s arbitrary text into internal domain
knowledge base representation.

4. Needs driven Guided Synthesizer

Figure 4 presents needs driven software
synthesis process.

A manager guides the software synthesis
process by means of his specification and
by discussion with the Guided Synthesizer
(synthesizer). The discussion clarifies the
terminology and semantics of the specification.
An ontology driven semantic analyzer
(hereinafter Analyzer) is responsible for the
discussion. It reads the specification step by
step, makes a sentence’s analysis that results a
semantic expectation of the next sentence. If the
expectation is confirmed, the Analyzer considers
the next sentence. If not, it generates questions
for the customer with the purpose to clarify the
semantics. Analyzer takes upon itself a deduction

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne I

of the manager’s specification by means of the
Query-Answering mode in case the manager
doesn’t want using the manager syntax.

The Analyzer produces the “needs satis-
factions resource” in form of known generic
target activity or as a set of available constructive
elements. After that Composer completes (alone
or by discussing with a manager) preconditions
and postconditions of operating constructive
elements. This job results a sought-for Executable
target activity.

Analyzer provides all basic abilities of an
intellectual interface [2]. It not only guides
the software synthesis, but also provides
communication with the manager, proves and
explains decisions, and trains users. Herewith it
operates with knowledge from the Experience
base. Therefore knowledge browsing is an
important role of Analyzer.

Using the factual mapping relation [1], we
describe the Analyzer by the following way:

Analyzer Knowledge Browsing,
Communication, SoftwareSynthesis, Explanation,
Training

Note that Analyzer acts on the basis of the
understanding process.

We define here an understanding process as
a proved mapping of the manager statements’
semantics into generic semantics of Experience
bases statements.

We mean by a manager’s statement his
specification, query, message or requirement.

4.1. Communication with a manager

Ontology driven semantic analyzer guides
a communication with a manager by means of
understanding of his professional slang. For
this purpose it compares the semantics and
ontology of the customer with generic ontology
and semantics. This mapping is one of the
main actions of Analyzer’s Query-Answering
mode. Query-Answering mode produces
Correspondence Table of the manager’s terms
with generic ontology. For this purpose Analyzer
generates questions by means of Need Language
semantic framework [1; 21; 22; 23; 24].

For example, in case of unknown need it
defines semantic coordinates [1] of the need by
means of questions like the following:

— What is your aim?

— What is the motivation for your need?

Answers for such questions detect need’s

49

semantics.

In case of a manager’s specification is
semantically unclear, Analyzer finds conformity
between separate units of the manager’s
specification and possible Need Satisfaction
Domain's elements by means of questions like
the following:

— Have you resource, named X (Def: X

is...)?

— Has the resource X the attribute, named Y
(Def: Yis...)?

And so on.

Analyser clarifies the X and Y semantics by
means of declarative descriptions [1].

BasedonCorrespondence Table, the Analyzer
“understands” the manager’s requirements and
messages.

Using Correspondence Table the Analyzer
translates an initial specification into specification
in generic ontology terms. It debates a new
specification with a manager by means of Query-
Answering mode. Final specification contains
description of executable target activity and all
operating constructive elements.

4.2. Knowledge browsing

Semantic marking of a manager’s
specification grounds a semantic search in
Experience base. It is possible since both an
experience’s description and the manager
syntax uses the same semantic tags [21].
Analyzer translates an initial specification into
specification in generic ontology terms (applying
the Correspondence Table) and uses a need as
well as plan units as key words for discovering
a target activity that meets the need’s semantics
and which constructive elements’ semantics suits
the plan’s units.

Analyzer wuses content of manager’s
specification as key words for the confirmation
of found target activity as a sought-for activity
as well as for the discovering of the necessary
constructive elements.

In case of absent a target activity that suits the
manager’s specification, Analyzer sequentially
finds in domain knowledge base constructive
elements that suit the plan’s units.

Generally speaking, we consider a
manager’s specification as a semantically marked
requirement for search in the experience base.
Herewith Analyzer processes the specification
using Query-Answering mode for the retrieving

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne]

Specification of the
current need

Manager

Ontology driven

Experience base

semantic analyser

Need's recognition

Needs Satisfaction

Domain

Applicable target

Set of applicable

activity

constructive elements

Composer

Executable target
activity

Fig. 4. Needs driven software synthesis process

the semantics of unknown terms.

4.3. Synthesizer

Following D. Pospelov [4], we consider the
synthesizer (in his terminology — Solver) as a
functional unit of the intellectual interface.

Extending the philosophical meaning of
the understanding concept, we consider it as the
solution concept. This implies that we identify
a complete understanding with a complete
solution.

Accordingly, understanding is the important
function of Analyzer.

Analyzer transforms the
specification into the

manager’s
Need Satisfaction

50

Domain specification by means of knowledge
browsing and the communication process. If
Analyzer discovers a generic target activity,
which semantics and configuration satisfies the
manager’s specification, then it checks and fulfills
all necessary preconditions and postconditions
and declares the software synthesis process
ended.

If not, Analyzer generates a new target
activity that satisfies the manager’s specification.
For this purpose it searches target activities and
constructive elements (both local and general)
that separately satisfy the plan’s units and
composes sought-for software.

In case of a target manager’s Need

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne I

Satisfaction Domain contains knowledge of
software platform, Analyzer composes ready to
use fragments of code that correspond to given
domain entities.

According to domain knowledge building
recommendation [1] the best way to build
Experience base effectively is to represent all
its components by means of unified software
platform. In this case all units of a manager’s
specification will be translated by Analyzer to
the code fragments automatically.

4.4. Grounding and explanation

Grounding and explanation is a mandatory
mode of an intellectual interface. This mode
provides a manager with detailed answers
for the following types of queries: “What X
18?7, “How did you obtain X?”, “Why did you
obtain X instead of Y?”, “Why did you obtain
X7, “How does X?”, “How do you apply Y?”,
“What do I need to get X?”, “What target activity
does satisfy my need N?” and other. Grounding
and explanation's mode also satisfies such
the manager’s requirements like “Display the
Correspondence Table”, “Display the solution
with detailed explanation”, “Teach me how to
satisfy the need ” and others.

The answer for question may be detailed
in accordance to the manager’s demand “Give
detailed answers for my questions”. For example,
as the answer for question “What is a triangle?”
may be a definition “A triangle is a part of the
plane formed by the intersection of three lines”
or may mirror software representation of a
triangle. For example, manager will receive
definitions that mirror methods of programming’s
representations of a triangle, which are accepted
inthe experience base under the Need Language’s
notation:

Def: Triangle V1V2V3

General:

(vertex(3), side(3), angle(3))

Vis.: General introduces the general
Triangle’s model,

Vis.: vertex is a pointer to array that
contain 3 triangle’s

vertexes

Vis.: side is a pointer to array that
contain 3 triangle’s

sides

Vis.: angle is a pointer to array that
contain 3 triangle’s

51

angles (x1,y1), (x2,y2), (x3,y3):

Vis.: where (x1,y1), (x2,y2), (x3,y3)

describes a
Triangle’s model,

Vis.: Vi names the triangle vertex i

Vis.: (xi,yi) means coordinates of
triangle’s vertex i
and so on.

For example, in case of the need is a
calculation of the spatially-rod constructions
(that consist of pyramids and triangles) by the
finite elements method, a manager receives a
definition of triangle from the calculation of
stress-strain state’s point of view (i. e. (x1, yl),
(x2, y2), (x3, y3) model of triangle).

Knowledge representation approach that is
recommended in [1] facilitates answers for above
mentioned queries and requirements due to the
deep specification of data. The deep specification
of data contains declarative descriptions and
detailed information about environmental needs
and target activities that allows deriving the
target causal-effect network that covers the target
activity’s environment.

Interpreting the structure of represented
knowledge, Analyzer generates a target causal-
effect net in the following way: the external
environment need causes the target activity; the
need of the target activity causes the need of
applying the set of constructive elements and
so on. Using the causal-effect net, Analyzer acts
as a navigator with the purpose of the providing
both groundings and explanations.

The cause and effect network provides also
understanding process. It provides a building
and verification of hypothetic interpretations of a
manager’s specification. Using the causal-effect
net, Analyzer builds expectation (hypothesize)
of the manager specification’s semantics. This
semantics will be proved or rejected further in
the course of both semantic search in Experience
base and Query-Answering process.

S. Example of manager’s specification.
Calculate the perimeter of the triangle

Note that for clarity, we use here the usual
denotations of the triangle and all its components.
In practice, the manager will use his own
terminology.

It’s given AABC such that ZA =58°, ZC
= A55°,BD L AC, DC = 4cm.

Find perimeter of a triangle.

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne 1

-
A C

D

Specification 1 (the manager writes
detailed specification):
Manager:

need: Perimeter AABC

state: L A=58°, Z/C=55°, DeAC,
BD1AC, DC=4cm

plan: BC, AB, AC, Perimeter AABC

need: length(BC):

state: ABCD, DC=4cm, £D=90,
ZC=55°

need: length(AB), length(AD)

state: AABD, A=58, D=90, Z/BD

need: Perimeter: AABC

state: AB, BC, AC=AD+DC

As a response to above specification
Analyzer searches in the domain knowledge
base an appropriate target activity (using need
and plan). Since the Experience base doesn’t
contain a target activity that suits need and plan,
Analyzer consequentially satisfies the manager’s
sub-needs listed in plan.

For the purpose of length (BC) calculation
(i.e.length of BC) Analyzer discovers that ABDC
is a right triangle, builds (using a corresponding
generic object’s model) its model, and applies
one of methods (local target activity) attached to
this model that calculate a hypotenuse (BC) as
a quotient from division of a cathetus (DC) of a
triangle on cosine a corner adjoining to it (LC).

The same actions lead to the calculation of
AB.

For the purpose of Perimeter calculation
Analyzer builds a model of AABC, finds a local
activity that calculates its perimeter as sum of
sides lengths.

Specification 2 (the manager writes non-
detailed specification):

Manager:

need: Perimeter AABC

state: LA=58°, LC=55°, DeAC, BDLAC,
DC=4cm

Processing this specification, the Analyzer
builds the models of AABC, AABD and
ABDC, and finds above mentioned local
activities independently.

6. Conclusion

Generally speaking, an automated software
synthesis task resolves itself into an automated
thinking’s task.

Since the nature of thinking is still unknown,
all that we can in these circumstances — is a
detailed representation of the human thinking’s
results that are fulfilled in practice (human
experience), as well as an advanced semantic
search mechanism to capture knowledge for
the problems solving. Herewith we consider
knowledge of human experience as a resource of
the thinking process.

Suggested synthesis approach starts from
understanding a customer as a manager of
available knowledge resources, a representation
of human experience in form of Need Satisfaction
Domains and a query-answering driven search
mechanism.

The guided synthesis is able to produce both
software (using previously represented fragments
of code) and scenarios of human activities for
the performance by a manager independently or
by means of his staff-

The guided synthesis releases a manager
(i. e. a customer) from routine operations. Using
his specification (detailed or not) executed in
the professional slang, the system generates
internal specification using domain ontology,
and composes a detailed description of the target
activity that ready for execution.

References

1. Abramovich, A. “Domain knowledge
representation”. Wuhan University, 2009.

2. Pospelov, D. Models of Human
Communication: Dialogue with Computer. //
International Journal of General Systems. —
1986. — Vol. 12, — Ne4. — P. 333-338.

3. Ilocnenos /I. A. DnexTpoHHas BBIYUCIIH-
TenbHass TexHuka. COOpHUK crareid. Bem. 3. —
M.: Paguo u cBs3p, 1989. — C. 4-20.

4. Ilocnenos /]. A. lecstb «ropsiaux TOUEK»
B HCCJICJIOBAaHUAX IO MCKYCCTBEHHOMY HHTEI-
nexry. // UarennekryansHble cucteMsl (MIY).
—1996.—-T. 1, Bpm. 1-4. — C. 47-56.

ISSN 2075-2067

BECTHUK FOPI'TY (HIIH). 2011. Ne I

5. Lezama, Armando Solar. Program
Synthesis by Sketching, Technical Report
No. UCB/EECS-2008-177, http://www.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
177 html.

6. Biermann, A. Automatic Programming.
In Encyclopedia of Artificial Intelligence. 2nd
edition. — New York: John Wiley&Sons, 1992.

7. Liu, H., Lieberman, H. Metafor:
Visualizing Stories as Code, http://larifari.org/
writing/IUI2005-Metafor.pdf.

8. Liu, H., Lieberman, H. Toward a
Programmatic Semantics of Natural Language.
Proceedings of the 20th IEEE Symposium
on Visual Languages and Human-Centric
Computing. IEEE Computer Society Press,
2004. http://larifari.org/writing/CHI2005-
NLInterfaces.pdf.

9. Fisher, B., Schumann, J. Automated
Synthesis of Statistical Data Analysis Programs,
Proc. SDP’02: Workshop Science Data
Processing, Greenbelt, MD, Feb. 26-28, 2002.

10. Fischer, B., Pressburger, T, Rosu,
G., Schumann, J. The AutoBayes Program
Synthesis System System Description,
Proc. CALCULEMUS 2001: 9th Symp. on
the Integration of Symbolic Computation and
Mechanized Reasoning, Siena, Italy, Jun. 21-22,
2001.

11. Fischer, B., Schumann, J. AutoBayes:
A System for the Synthesis of Data Analysis
Programs, Proc. NIPS 2000: Workshop on
Software Support for Bayesian Analysis Systems,
Breckenridge, CO, Dec. 1, 2000.

12. Buntine, W., Fischer, B., Pressburger, T.
Towards Automated Synthesis of Data Mining
Programs, Proc. KDD’99: 5th ACM Int’l Conf.
on Knowledge Discovery and Data Mining, San
Diego, CA, Aug. 15-18, 1999.

Ilocmynuna 6 pedaxyuio

13. Fischer, B., Pressburger, T, Rosu, G.,
Schumann, J. The AutoBayes Program Synthesis
System-System Description, RIACS / zCode IC,
NASA Ames Research Center, M/S 269-2.

14. Whittle, J. and others. Amphion/
NAV: Deductive Synthesis of State Estimation
Software. ASE Group: NASA, http://ti.arc.nasa.
gov/m/tech/rse/publications/papers/ASE01/
final.pdf.

15. Manna, Z., Waldinger, R. Fundamentals
of Deductive Program Transactions on Software
Engineering. — 1992. — Vol. 18(8). — P. 674-704.

16. Smith, Douglas R. A Problem Reduction
Approach to Program Synthesis. http://dli.iiit.
ac.in/ijcai/lJCAI-83-VOL-1/PDF/005.pdf.

17. Hemvbsinkos B. 3. [lonumanue Kak UHTEp-
MIPETUPYIOIIAs IeSTeIbHOCTD. // BOpPOCHI S3bI-
ko3HaHus. — 1983. — Ne6. — C. 58-67.

18. Lezama, Armando Solar. Program
Synthesis By Sketching, EECS Department,
University of California, Berkeley, Technical
Report No. UCB/EECS-2008-177, December
19, 2008. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2008/EECS-2008-177.pdf.

19. Korukhova, Yulia S. Automation
of Program Synthesis from Logic-Based
Specifications in the Deductive Tableau,
Lomonosov Moscow State University.

20. Abramovich, A. Need Language
knowledge representation platform, Wuhan
University, 2009.

21. Abramovich, A. Need Language,
COLLIN, 2010.

22. Abramovich, A. Towards a Global
Platform of Human Experience, SDPS, 2010.

23. Abramovich, A. Towards Linked Needs,
ICSC, 2010.

18 sneaps 2011 e.

53

ISSN 2075-2067 BECTHUK FOPI'TY (HIIH). 2011. Ne 1

Auexcanap MapunanoBuy AOpaMoBHY — JJOKTOp MaTeMaTHyec-
KUX HayK, UCclieioBarenb Benylel rocyrapcTBeHHOI 1abopaTopun
1o pazpaboTke MPOrpaMMHOTO 00ECTIeYeHUsT YXaHbCKOTO YHUBEPCH-
tera (Kuraif). ABrop 6onee 50 HayuHbIX myOnukarmii. PykoBonutennb
MEXTYHapOIHOTO HCCIIEA0BATENbCKOIO MpoekTa «CBsA3aHHBIE IOT-
peOHOCTIY.

Alexander Marianovich Abramovich — M.Sc. in mathematics,
visitor researcher (State Key Laboratory of Software Engineering,
University of Wuhan, China). Author of more than 50 scientific works.
Leader of International research project «Linked Needs».

38/13 Hazionut st., 35312, Haifa, Israel
Ten.: 972-502-1944-36, e-mail: webdao@gmail.com

I BCEPOCCUMCKU CUMIIO3UYM IO PETUOHAJIBHOM SdKOHOMUKE
(ExarepunOypr, 28 utons — 1 urous 2011 r.)

Cexmust sxoHomuku Otnenenust odecTBeHHbIX Hayk PAH, MucTHTY T
sxonomuku YpO PAH, Poccutickuii hoH pyHIaMEHTATBHBIX UCCIIEI0BA-
Hul, Poccuiickuii rymanuTapusiii Hayasbli hona, OAO «TpyOnas merai-
Jyprudeckas KOMIaHUsD» Mpu uHGopMalMoHHON moanepxke JKypHana
HKOHOMUYECKOU TEOpUH,)KypHaia « JKOHOMUKA PETHOHA» U U3AATENIbCKO-
ro noma «@UHAHCHI M KpeIuT» W3BenaroT o nposeaeHuu I Becepoccuiicko-
ro CUMIIO3UyMa MO0 PErHOHATIBHON AKOHOMUKE, MOCBAIIEHHOTO 40-J1eTHIO
HNucturyra s3xonomuku YpO PAH.

[Ipeacenarens Opranu3zaimoOHHOTO KoMHuTeTa CUMITO3UyMa — aKaJie-
muk A. U. Tarapkun. Conpencenarenu — akaaemuk II. A. Munakup, akagemuk B. B. Kynemos.
3amecturens npencenarend 1.3.H. FO. I JlaBpukoa. Yuenslii cekperapb — K.3.H. M. B. Biacos.

Padora Cumnosuyma OyneT NpoxXoauTh MO CJIeIYIOIHMM HAYYHbIM HANPABJICHUSM:

1. HanpaBnenus u npoGiaeMbl pa3BUTUSI COBPEMEHHON TEOPHH U METOAOJIOTMH PETHMOHATBHON
SKOHOMMKH.

2. MHCTUTYTBI PETMOHAJIBHOTO MHHOBALIMOHHOTO Pa3BUTHUS

3. WHCTUTYTHI CAMOpPa3BUTUS TEPPUTOPUIA Pa3HOIO YPOBHSI.

4. MHCcTpyMEeHTapHil U METObI IPOTHO3UPOBAHUS PETMOHAIBHOTO PA3BUTHS.

5. CoBpeMmeHHas ToCyJapCTBEHHAs! pETMOHAIbHAS IOJIUTHKA.

Perucrpanusi yuactaukoB ocyumiectsisiercas TOJIBKO na caiite MHCTUTYTa SKOHOMUKH
YpO PAH: www.uiec.ru, 3asiBKA U TE3UCHI IOKJIAIOB, PUCIIAHHBIC JTIOOBIM IpYyTUM criocodom, Op-
TKOMHUTETOM paccMaTpUBaThCs HE OyIyT.

Anpec OprkoMuTeTa CUMIIO3UyMa:

620014, ExarepunOypr, yi. MockoBckast, 29, MactutyTt skonomuku YpO PAH, ka6. 513.
E-mail: simpozium2011@mail.ru

Agnpec caifta Uit perucTpaliy y4aCTHUKOB, OTIPABKH 3asBOK U TE3UCOB JOKJIAJ0B: WWW.Uiec.ru

54

